Introduction to Meta-Analysis and Systematic Reviews

Noel A. Card

Professor, Dept. of Human Development & Family Studies

noel.card@uconn.edu

2012, Guilford Press
Overview of talk

• Role of literature reviews in the accumulation of scientific knowledge.
• Steps in performing meta-analysis.
• Meta-analysis and other approaches.
Overview of talk

- Role of literature reviews in the accumulation of scientific knowledge.
 - Progress in science.
 - Types of literature review.
- Steps in performing meta-analysis.
- Meta-analysis and other approaches.
Progress in science

• Science is often said to build on prior work in a cumulative manner.

 – “If I have seen further it is by standing upon the shoulders of giants.” - Isaac Newton, 1675
Progress in science

• Science is often said to build on prior work in a cumulative manner.

• **Normal Science** *(Kuhn, 1962 *Structure of Scientific Revolutions*)

 – Periods in which scientific knowledge advances by accumulating evidence within the dominant paradigm.

 – Sciences (established disciplines) exist primarily in this period, and periods of revolution (paradigm shifts) should be rare.
Progress in science

• Science is often said to build on prior work in a cumulative manner.

• Normal Science (Kuhn, 1962 Structure of Scientific Revolutions)

• Barriers to orderly progression of science:
 – Multiple “blueprints” (i.e., research agendas, theoretical foundations, professional pressures incentivize novelty).
 – Information overload (i.e., increasing numbers of researchers, research production, journals / outlets).
 – Studies differ in samples, methodologies, measures… (i.e., exact, or even deliberate inexact, replication is rare).
Progress in science

- Science is often said to build on prior work in a cumulative manner.
- Normal Science (Kuhn, 1962 *Structure of Scientific Revolutions*)
- Barriers to orderly progression of science
- The solution… literature reviews / meta-analysis.
 - Research questions informed by data (not necessarily researcher’s original intention).
 - Synthesize many studies (as many as you are willing to code).
 - Combine and compare across diverse types of studies.
Types of literature review

• A regular part of scholarship is to review literature.
 – Reading literature to inform practice or policy.
 – Literature reviews for comprehensive exams or “Chapter 1” of dissertation.
 – Writing chapter for edited book.
 – Reviewing literature in Introduction section of manuscript.
Types of literature review

- A regular part of scholarship is to review literature.
- However, few scholars formally trained in performing literature reviews.
 - Common doctoral coursework:
 - 1-2 courses in research methodology.
 - 2-5 courses in data analysis.
 - Additional courses / work developing expertise in conducting primary studies in specialized area.
 - 0 courses / formal training in literature review / MA
Types of literature review

• A regular part of scholarship is to review literature.
• Literature reviews vary along several dimensions (Cooper & Hedges, 1994)
 – **Audience** (e.g., specialized scholars, general scholars, general public).
 – **Perspective** (e.g., neutral versus espousing position).
 – **Coverage** (e.g., central, representative, exhaustive w/ selective citation, exhaustive).
 – **Focus** – *see next slide.*
 – **Method of synthesis** – *see next slide.*
Types of literature review

Super-ordinate category:

Focus:

Method of synthesis:
Recap

• Role of literature reviews in the accumulation of scientific knowledge.
 – Progress in science.
 – Types of literature review.
• Steps in performing meta-analysis.
• Meta-analysis and other approaches.
Roadmap

• Role of literature reviews in the accumulation of scientific knowledge.

• Steps in performing meta-analysis.
 – Research questions appropriate for MA.
 – Searching for literature.
 – Coding the literature.
 – Synthesizing research and drawing conclusions.
 – Presenting findings.

• Meta-analysis and other approaches.
Roadmap

• Role of literature reviews in the accumulation of scientific knowledge.

• Steps in performing meta-analysis.
 – Research questions appropriate for MA.
 – Searching for literature.
 – Coding the literature.
 – Synthesizing research and drawing conclusions.
 – Presenting findings.

• Meta-analysis and other approaches.
Searching for Literature

• Inclusion versus exclusion criteria.
 – Set of statements that define that population of studies included in a meta-analysis.
 • Guide decisions to include studies.
 • Communicate to readers.
Searching for Literature

• Inclusion versus exclusion criteria.
 – Set of statements that define that population of studies included in a meta-analysis.
 – Common criteria:
 • Characteristics of intervention.
 • Operational definitions of variables.
 • Research methods (e.g., type of design, placebo control).
 • Sample characteristics (e.g., age range).
 • Cultural range (e.g., publication language).
Searching for Literature

• Search strategy.
 – Specific approaches:
 • **Electronic databases:** Specify keywords, Boolean operations, disciplinary versus general.
 • **Forward searches:** Studies citing seminal works in area.
 • **Backward searches:** Reading literature cited in other reports.
 • **Conference programs:** Captures newer work.
 • **Granting agencies:** Research evaluated before results are known.
 • **Clinical trial / preregistration databases**
 • **Email / listserv requests:** Especially for unpublished work.
Searching for Literature

• Search strategy.
 – Specific approaches
 – Balance between:
 • Recall = theoretical % of documents retrieved to those that should be retrieved.
 • Precision = % retrieved documents that are relevant.
 – Meta-analyses (and other systematic reviews) aim to be exhaustive \(\rightarrow\) maximize recall to reduce threat of publication bias
Searching for Literature

- Publication bias.

Population of effect sizes

Published effect sizes
Roadmap

• Role of literature reviews in the accumulation of scientific knowledge.

• Steps in performing meta-analysis.
 – Research questions appropriate for MA.
 – Searching for literature.
 – Coding the literature.
 – Synthesizing research and drawing conclusions.
 – Presenting findings.

• Meta-analysis and other approaches.
Coding the Literature

- Systematically code information from studies.
 - Study characteristics.
 - Features of sample, methodology, measurement.
 - Used to...
 - Describe state of research.
 - Predict differences in study results.
Coding the Literature

• Systematically code information from studies.
 – Study characteristics.
 – Study results.
 • Coded as Effect Sizes (!!!)
Coding the Literature

• Effect sizes.
 – Effect sizes are not...
 • Author conclusions in Discussion.
 • Significance tests (i.e., \(p \) values).
Coding the Literature

• Effect sizes.
 – Effect sizes are not...
 • Author conclusions in Discussion.
 • Significance tests (i.e., \(p \) values).
 – Effect sizes are...
 • Comparable / combinable across studies.
 • Calculable from a wide range of reported results (e.g., summary statistics, t-tests, ANOVA results, correlations, odds ratios).
 • Understandable / meaningful to readers.
Coding the Literature

• Effect sizes.
 – Many types of effect sizes
 • \(r \) = association between two (continuous) variables.
 • \(d \) or \(g \) = standardized mean difference between two groups.
 • Odds ratio = contingency / association between two dichotomous variables.
Coding the Literature

• Effect sizes.
 – Many types of effect sizes
 • r = association between two (continuous) variables.
 • d or g = standardized mean difference between two groups.
 • Odds ratio = contingency / association between two dichotomous variables.
 • Mean / proportion = central tendency of one variable.
 • Unstandardized mean difference = retains meaningful information about scale.
 • Longitudinal change scores / pre-post differences.
 • Psychometric properties of measures.
Coding the Literature

• Effect sizes.
 – Many types of effect sizes
 – Tasks of meta-analyst:
 • Decide type of study result to extract.
 • Decide type of effect size best suited for this type of result.
 • Compute this effect size from diverse ways results reported.
Coding the Literature

- **Effect sizes.**
 - Many types of effect sizes
 - Tasks of meta-analyst.
 - Computing effect sizes:
 - Formulas reported in books and articles.
 - Use program / online calculator.

![Example Example](image-url)
Roadmap

• Role of literature reviews in the accumulation of scientific knowledge.

• Steps in performing meta-analysis.
 – Research questions appropriate for MA.
 – Searching for literature.
 – Coding the literature.
 – Synthesizing research and drawing conclusions.
 – Presenting findings.

• Meta-analysis and other approaches.
Synthesizing Effect Sizes

- Two major goals:
 - Combining effect sizes across studies.
 - Overall average effect size.
 - Comparing effect sizes across studies.
 - Coded study characteristics as predictors of effect sizes.
Synthesizing Effect Sizes

• Combining effect sizes across studies.
 – Studies are weighted by the precision of the point estimate of effect size.
 – A common weighting: \(w_i = \frac{1}{SE_i^2} \)

• Where \(SE_i \) is the standard error for study \(i \).
• Larger \(N \) studies receive larger weight
Synthesizing Effect Sizes

• Combining effect sizes across studies.
 – Weighting only by a function of sampling error would only by if…

Sampling error only
Combining effect sizes across studies.
 - Weighting only by a function of sampling error would only be if there is only sampling error variability

Sampling error only

Sampling error + other variability
Synthesizing Effect Sizes

• Combining effect sizes across studies.
 – When there is significant heterogeneity (i.e., other between-study variability), it is necessary to account for both sources of imprecision → Random-effects model

\[T_i = \theta + \varepsilon_i \]

where \(\varepsilon_i \) is the sampling error of \(T_i \)

\[T_i = \mu + \xi_i + \varepsilon_i \]

where \(\theta_i \) is the population effect size for each study, \(\xi_i \) is the study-deviation from \(\mu \), and \(\varepsilon_i \) is the sample-sampling error
Synthesizing Effect Sizes

• Combining effect sizes across studies.
 – Another way to think about random-effects models:

Population of all possible studies of a phenomenon

Variability due to population studied, methodology, measurement, or ???

Variability due to sampling error / fluctuation

Study 1 Study 2 Study 3 Study 4
ε₁ ε₂ ε₃ ε₄

Low High

Observed ES
Synthesizing Effect Sizes

• Combining effect sizes across studies.
 – Studies are weighted by the precision of the point estimate of effect size.
 – A more appropriate (random effects) weighting:

\[w_i = \frac{1}{SE_i^2 + \tau^2} \]

• Where \(SE_i \) is the standard error for study \(i \).
• \(\tau^2 \) is the estimated between-study variance above and beyond sampling error variance.
Synthesizing Effect Sizes

- Two major goals:
 - Combining effect sizes across studies.
 - Overall average effect size.
 - Comparing effect sizes across studies.
 - Coded study characteristics as predictors of effect sizes.
Synthesizing Effect Sizes

• Comparing effect sizes across studies.
 – Rather than simply modeling heterogeneity as “other between-study variability”…
 – … attempt to predict why studies vary in their effect sizes.
Synthesizing Effect Sizes

- Comparing effect sizes across studies.
 - Two general approaches:
 - ANOVA approach for categorical study characteristics
 - Regression approach for continuous study characteristics
 - Regression approach can also accommodate categorical, multiple predictors, nonlinear, etc.
Synthesizing Effect Sizes

- Comparing effect sizes across studies.
 - ANOVA approach for categorical study characteristics
- Partitions heterogeneity (i.e., variance) into within- and between-group components:

\[Q_{Total} = Q_{Between} + Q_{Within} \]

\[Q_{Total} = \sum [w_i(ES_i - GM)^2] = (\sum w_i ES_i^2) - \frac{(\sum w_i ES_i)^2}{\sum w_i} \]

\[Q_{Between} = \sum [w_j(M_j - GM)^2] = (\sum w_j M_j^2) - \frac{(\sum w_j M_j)^2}{\sum w_j} \]

\[Q_{within} = \sum^J \sum^I w_i(ES_i - M_j)^2 = Q_1 + Q_2 + \ldots + Q_J \]

- Significance indicated by \(Q_{Between} \)
Synthesizing Effect Sizes

• Comparing effect sizes across studies.
 – Regression approach for continuous study characteristics.

• Use standard software package (e.g., SPSS, SAS, R) to perform weighted regression
Synthesizing Effect Sizes

- Comparing effect sizes across studies.
 - Regression approach for continuous study characteristics.
 - Can extend regression approach to include multiple predictors
- Useful if study characteristics co-occur.
 - E.g., Measures used with different samples.
 - E.g., Methodological quality versus publication status.
Synthesizing Effect Sizes

• Comparing effect sizes across studies.
 – Regression approach for continuous study characteristics.
 – Can extend regression approach to include multiple predictors
 – Can add interactions and powered polynomials
 • Interactions:
 – Are ethnic differences in results more evident with some measures than others?
 • Powered polynomials: Test nonlinear associations of study characteristics.
 – E.g., Is maximum therapy effectiveness reached after a certain number of sessions?
Synthesizing Effect Sizes

• Summary.
 – Methods of analysis are not much more complex than other data analyses.
 • Though there are complex extensions.
 – For full details see e.g.,:
Recap

• Role of literature reviews in the accumulation of scientific knowledge.

• Steps in performing meta-analysis.
 – Research questions appropriate for MA.
 – Searching for literature.
 – Coding the literature.
 – Synthesizing research and drawing conclusions.
 – Presenting findings.

• Meta-analysis and other approaches.
Roadmap

- Role of literature reviews in the accumulation of scientific knowledge.
- Steps in performing meta-analysis.
- Meta-analysis and other approaches.
 - Primary studies.
 - (Non-meta-analytic) systematic reviews.
 - Integrative data analysis.
 - Replication, MA, and accumulation of knowledge.
MA and Other Approaches

- Advantages of Meta-Analysis relative to Primary Studies:
 - Greater statistical power / precision.
 - Broader representation of samples, measures, countries, times, etc.
 - Tests generalizability of an effect
 - Compares effects across samples etc. (moderation)
- Advantages of primary studies:
 - Evaluating complex multivariate models.
 - Absence of previous studies.
MA and Other Approaches

• Advantages of Meta-Analysis over Narrative Reviews:
 – Discipline / guidance for searching, coding, analysis.
 – Handles large amount of information.
 – Conclusions statistically defensible / debatable.
 – Systematic coding and analysis might be more precise.

• Advantages of Narrative Reviews:
 – Possibility of handling study results not easily converted to effect sizes.
 – (Arguably) deeper understanding of individual studies.
MA and Other Approaches

- **Integrative Data Analysis (IDA)** = Combination and analysis of *raw data* from multiple data sets.

- **Advantages of IDA:**
 - Allows analysis of within- and between-study variability. (E.g., analysis of individual-level demographic information rather than aggregating to the study level)
 - Explicit attention to harmonizing and evaluating measurement equivalence across data sets.

- **Advantages of MA over IDA:**
 - Easier (AKA, you can actually do it)
 - As good as IDA for overall average and between-study comparisons.
MA and Other Approaches

• Meta-analysis directly responds to the ‘replication crisis’
 – Cumulative meta-analysis = studies are added one at a time, and results are updated.
 – A new model of programmatic lines of research (versus single-study focus):
MA and Other Approaches

- Meta-analysis directly responds to the ‘replication crisis’
 - Cumulative meta-analysis = studies are added one at a time, and results are updated.
 - A new model of programmatic lines of research (versus single-study focus):

A) Exact replications

```
<table>
<thead>
<tr>
<th>Effect size estimate</th>
<th>Number of studies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Role of Lit Rev. Steps in MA Other App.
MA and Other Approaches

- Meta-analysis directly responds to the ‘replication crisis”
 - Cumulative meta-analysis = studies are added one at a time, and results are updated.
 - A new model of programmatic lines of research (versus single-study focus):

B) Unplanned inexact replications

![Graph](image)
MA and Other Approaches

- Meta-analysis directly responds to the ‘replication crisis’
 - Cumulative meta-analysis = studies are added one at a time, and results are updated.
 - A new model of programmatic lines of research (versus single-study focus):

C) Planned inexact replications

![Graph showing planned inexact replications](image)
Recap

- Role of literature reviews in the accumulation of scientific knowledge.
- Steps in performing meta-analysis.
- Meta-analysis and other approaches.
 - Primary studies.
 - (Non-meta-analytic) systematic reviews.
 - Integrative data analysis.
 - Replication, MA, and accumulation of knowledge.
Final thoughts

• Literature reviews and meta-analysis play a critical role in accumulating scientific knowledge.
 – Synthesis of existing studies at least as important as creating more studies.
Final thoughts

- Literature reviews and meta-analysis play a critical role in accumulating scientific knowledge.
- The steps of basic meta-analysis are reasonably tractable.
 - One semester course / one week workshop provides working knowledge.
 - Several accessible books.
Final thoughts

• Literature reviews and meta-analysis play a critical role in accumulating scientific knowledge.
• The steps of basic meta-analysis are reasonably tractable.
• Meta-analysis is a valuable piece of (all of our) research agendas.
 – Provides different approach in addition to other efforts
 – Not impeded by IRB issues, inaccessibility of participants, etc.
 – Informs most important next steps for primary studies.
Thanks!!

Questions / Discussion.

Contact: noel.card@uconn.edu
App. 1 (effect sizes are not significance tests)

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>4</td>
<td>S2</td>
</tr>
<tr>
<td>S3</td>
<td>4</td>
<td>S4</td>
</tr>
<tr>
<td>S5</td>
<td>3</td>
<td>S6</td>
</tr>
<tr>
<td>S7</td>
<td>2</td>
<td>S8</td>
</tr>
<tr>
<td>S9</td>
<td>2</td>
<td>S10</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Sum</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>Mean</td>
<td>3.00</td>
<td>5.00</td>
</tr>
<tr>
<td>S</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

\[
t(8) = \left(\frac{M1 - M2}{\frac{S_{within}}{\sqrt{N}}} \right) \left(\frac{\sqrt{N}}{2} \right) = 3.16, \quad p = .013
\]
<table>
<thead>
<tr>
<th>Control</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 = 4</td>
<td>S2 = 6</td>
</tr>
<tr>
<td>S3 = 4</td>
<td>S4 = 6</td>
</tr>
<tr>
<td>S5 = 3</td>
<td>S6 = 5</td>
</tr>
<tr>
<td>S7 = 2</td>
<td>S8 = 4</td>
</tr>
<tr>
<td>S9 = 2</td>
<td>S10 = 4</td>
</tr>
</tbody>
</table>

N	5	5
Sum	15	25
Mean	3.00	5.00
S	1.00	1.00

\[
t(8) = \left(\frac{M_1 - M_2}{S_{\text{within}}} \right) \left(\sqrt{\frac{N}{2}} \right) = 3.16, \quad p = .013
\]

<table>
<thead>
<tr>
<th>Control</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 = 4</td>
<td>S2 = 6</td>
</tr>
<tr>
<td>S3 = 3</td>
<td>S4 = 5</td>
</tr>
<tr>
<td>S5 = 2</td>
<td>S6 = 4</td>
</tr>
</tbody>
</table>

N	3	3
Sum	9	15
Mean	3.00	5.00
S	1.00	1.00

\[
t(4) = \left(\frac{M_1 - M_2}{S_{\text{within}}} \right) \left(\sqrt{\frac{N}{2}} \right) = 2.45, \quad p = .071
\]
App. 1 (effect sizes are not significance tests)

<table>
<thead>
<tr>
<th>Control</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 = 4</td>
<td>S2 = 6</td>
</tr>
<tr>
<td>S3 = 4</td>
<td>S4 = 6</td>
</tr>
<tr>
<td>S5 = 3</td>
<td>S6 = 5</td>
</tr>
<tr>
<td>S7 = 2</td>
<td>S8 = 4</td>
</tr>
<tr>
<td>S9 = 2</td>
<td>S10 = 4</td>
</tr>
</tbody>
</table>

N	5	5
Sum	15	25
Mean	3.00	5.00
S	1.00	1.00

\[t(8) = \left(\frac{M_1 - M_2}{S_{\text{within}}} \right) \left(\frac{\sqrt{N}}{2} \right) = 3.16, \quad p = .013 \]

<table>
<thead>
<tr>
<th>Control</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 = 4</td>
<td>S2 = 6</td>
</tr>
<tr>
<td>S3 = 4</td>
<td>S4 = 6</td>
</tr>
<tr>
<td>S5 = 3</td>
<td>S6 = 5</td>
</tr>
<tr>
<td>S7 = 2</td>
<td>S8 = 4</td>
</tr>
<tr>
<td>S9 = 2</td>
<td>S10 = 4</td>
</tr>
<tr>
<td>S11 = 4</td>
<td>S12 = 4</td>
</tr>
<tr>
<td>S13 = 4</td>
<td>S14 = 4</td>
</tr>
<tr>
<td>S15 = 3</td>
<td>S16 = 5</td>
</tr>
<tr>
<td>S17 = 2</td>
<td>S18 = 4</td>
</tr>
<tr>
<td>S19 = 2</td>
<td>S20 = 4</td>
</tr>
</tbody>
</table>

N	10	10
Sum	30	50
Mean	3.00	5.00
S	1.00	1.00

\[t = \left(\frac{M_1 - M_2}{S_{\text{within}}} \right) \left(\frac{\sqrt{N}}{2} \right) = 4.74, \quad p = .00016 \]
App. 1 (effect sizes are not significance tests)

• In the three examples, we have three different levels of significance:
 – N=3, $t = 2.45$, $p = .071$
 – N=5, $t = 3.16$, $p = .013$
 – N=10, $t = 4.74$, $p = .00016$

• However, the magnitude of the effect sizes in each sample is identical:
 – The differences in means was 2 standard deviations.
Difference between effect size and statistical significance

- Hypothesis testing = Evaluating whether the null hypothesis can be rejected (at a certain level of improbability, e.g., \(p < .05 \)).
- Effect size = Magnitude of difference between groups (or magnitude of relation between two variables, etc.).
- Relation between hypothesis testing and effect sizes:

\[
\begin{align*}
\text{test of significance} & = \text{effect size} \times \text{size of study} \\
\text{t}_{(\text{independent})} & = \frac{d}{\sqrt{\text{df}}} \\
t & = \frac{r}{\sqrt{(1 - r^2)}} \\
\chi^2(1) & = \frac{\Phi^2}{N}
\end{align*}
\]
App. 2 (Online calculator for ES)

- Calculate effect sizes from two studies
App. 2 (Online calculator for ES)

- Two studies from a review of the effectiveness of teen dating violence prevention programs in K-12 schools

- Note: I will compute different effect sizes (SMD and r) for an example. You would usually compute a common effect size for all studies in your MA.
• Standardized mean difference
 • Treatment N = 235
 • Control N = 205
 • Post-treatment comparison on 6 scales, two of which met inclusion criteria of review.
 • For this calculation, focus on “physical conflict tactics”
App. 2 (Online calculator for ES)

- Standardized mean difference
 - Post-treatment comparison…
 - …for this calculation, focus on “physical conflict tactics”

Table 3. Means and Standard Deviations of Relationship Beliefs and Conflict Tactics Scales’ Subscales

<table>
<thead>
<tr>
<th>Conflict tactics subscales</th>
<th>Experimental Group</th>
<th>Control Group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pretest</td>
<td>Posttest</td>
</tr>
<tr>
<td>Reasoning</td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>Verbal</td>
<td>2.66</td>
<td>1.26</td>
</tr>
<tr>
<td>Physical</td>
<td>1.91</td>
<td>1.45</td>
</tr>
<tr>
<td></td>
<td>.76</td>
<td>1.21</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relationship belief subscales</th>
<th>Experimental Group</th>
<th>Control Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggression beliefs</td>
<td>M</td>
<td>SD</td>
</tr>
<tr>
<td>Faulty relationship beliefs</td>
<td>3.37</td>
<td>.83</td>
</tr>
<tr>
<td>Realistic relationship beliefs</td>
<td>2.96</td>
<td>.53</td>
</tr>
<tr>
<td></td>
<td>2.89</td>
<td>.47</td>
</tr>
</tbody>
</table>

258
App. 2 (Online calculator for ES)

- Standardized mean difference

 - Coded information:

 - Treatment N = 235, $M = 0.82$, $SD = 1.33$
 - Control N = 205, $M = 1.17$, $SD = 1.67$
 - All necessary information to compute SMD
Standardized mean difference

Coded information: Treatment $N = 235, M = 0.82, SD = 1.33$
Control $N = 205, M = 1.17, SD = 1.67$

Practical Meta-Analysis Effect Size Calculator
David B. Wilson, Ph.D., George Mason University

This is a web-based effect-size calculator. It is designed to facilitate the computation of effect-sizes for meta-analysis. Four effect-size types can be computed from various input data: the standardized mean difference, the correlation coefficient, the odds ratio, and the risk-ratio.

This calculator is a companion to the 2001 book by Mark W. Lipsey and David B. Wilson, Practical Meta-analysis, published by Sage. An older Excel based version of the calculator can be found at http://mason.gmu.edu/~dwilsonb/ma.html. Additional tools for performing meta-analysis can also be found at that web address.

This work is licensed under a Creative Commons Attribution-Noncommercial 3.0 United States License.
Standardized mean difference

Coded information: Treatment N = 235, $M = 0.82$, $SD = 1.33$
Control N = 205, $M = 1.17$, $SD = 1.67$
Standardized mean difference

Coded information:

Treatment N = 235, $M = 0.82$, $SD = 1.33$

Control N = 205, $M = 1.17$, $SD = 1.67$
Standardized mean difference

Coded information:

Treatment N = 235, $M = 0.82$, $SD = 1.33$

Control N = 205, $M = 1.17$, $SD = 1.67$
Standardized mean difference

Coded information: Treatment $N = 235, M = 0.82, SD = 1.33$
Control $N = 205, M = 1.17, SD = 1.67$

Effect size = $d = -0.2336$

$V = SE^2 = 0.0092$ (for weighting)
Second Example:
Correlation (r) between treatment and dating violence
• Correlation \((r) \) between treatment and dating violence

Table 2. Physical Dating Violence Reported in the Past Year at 2.5-Year Follow-up According to Experimental Group

<table>
<thead>
<tr>
<th>Students With PDV, No./Total No. (%)</th>
<th>Control Group</th>
<th>Intervention Group</th>
<th>ICC</th>
<th>OR (95% CI)</th>
<th>t Test</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>All students</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unadjusted OR(^a)</td>
<td>74/754 (9.8)</td>
<td>72/968 (7.4)</td>
<td>0.02</td>
<td>1.42 (0.87-2.33)</td>
<td>1.49</td>
<td>.15</td>
</tr>
<tr>
<td>Adjusted OR(^b)</td>
<td></td>
<td></td>
<td></td>
<td>2.42 (1.00-6.02)</td>
<td>2.06</td>
<td>.05</td>
</tr>
<tr>
<td>Students who dated in the past 12 mo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unadjusted OR(^a)</td>
<td>71/369 (19.2)</td>
<td>72/480 (15.0)</td>
<td>0.02</td>
<td>1.37 (0.89-2.13)</td>
<td>1.53</td>
<td>.14</td>
</tr>
<tr>
<td>Adjusted OR(^b)</td>
<td></td>
<td></td>
<td></td>
<td>2.13 (0.81-5.66)</td>
<td>1.65</td>
<td>.12</td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence interval; ICC, intraclass correlation coefficient; OR, odds ratio; PDV, physical dating violence.

\(^a\) Odds ratios of the intervention effect from the multilevel model.

\(^b\) Odds ratios were adjusted for baseline behavior, stratifying variables, and sex (\(n=1722\) in the full model; \(n=1041\) in the model restricted to the dating sample).
App. 2 (Online calculator for ES)

- Correlation (r) between treatment and dating violence

<table>
<thead>
<tr>
<th>Table 2. Physical Dating Violence Reported in the Past Year at 2.5-Year Follow-up According to Experimental Group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>All students</td>
</tr>
<tr>
<td>Unadjusted ORa</td>
</tr>
<tr>
<td>Adjusted ORb</td>
</tr>
<tr>
<td>Students who dated in the past 12 mo</td>
</tr>
<tr>
<td>Unadjusted ORa</td>
</tr>
<tr>
<td>Adjusted ORb</td>
</tr>
</tbody>
</table>

Subgroup analysis not relevant for this review

Abbreviations: CI, confidence interval; ICC, intracluster correlation coefficient; OR, odds ratio; PDV, physical dating violence.

aOdds ratios of the intervention effect from the multilevel model.

bOdds ratios were adjusted for baseline behavior, stratifying variables, and sex (n=1722 in the full model; n=1041 in the model restricted to the dating sample).
App. 2 (Online calculator for ES)

- Correlation (r) between treatment and dating violence

Table 2. Physical Dating Violence Reported in the Past Year at 2.5-Year Follow-up According to Experimental Group

<table>
<thead>
<tr>
<th>Students With PDV, No./Total No. (%)</th>
<th>Control Group</th>
<th>Intervention Group</th>
<th>ICC</th>
<th>OR (95% CI)</th>
<th>t Test</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>All students</td>
<td>74/754 (9.8)</td>
<td>72/968 (7.4)</td>
<td>0.02</td>
<td>1.42 (0.87-2.33)</td>
<td>1.49</td>
<td>.15</td>
</tr>
<tr>
<td>Unadjusted ORa</td>
<td></td>
<td></td>
<td></td>
<td>2.42 (1.00-6.02)</td>
<td>2.06</td>
<td>.05</td>
</tr>
<tr>
<td>Adjusted ORb</td>
<td></td>
<td></td>
<td></td>
<td>1.37 (0.89-2.13)</td>
<td>1.53</td>
<td>.14</td>
</tr>
<tr>
<td>Students who dated in the past 12 mo</td>
<td>54/629 (8.6)</td>
<td>58/864 (6.7)</td>
<td></td>
<td>2.13 (0.81-5.66)</td>
<td>1.65</td>
<td>.12</td>
</tr>
<tr>
<td>Unadjusted ORa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adjusted ORb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subgroup analysis not relevant for this review

Abbreviations: CI, confidence interval; ICC, intraclass correlation coefficient; OR, odds ratio; PDV, physical dating violence.

aOdds ratios of the intervention effect from the multilevel model.

bOdds ratios were adjusted for baseline behavior, stratifying variables, and sex (n=1722 in the full model; n=1041 in the model restricted to the dating sample).
App. 2 (Online calculator for ES)

- Correlation (r) between treatment and dating violence

<table>
<thead>
<tr>
<th>Table 2. Physical Dating Violence Reported in the Past Year at 2.5-Year Follow-up According to Experimental Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students With PDV, No./Total No. (%)</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>Control Group</td>
</tr>
<tr>
<td>All students</td>
</tr>
<tr>
<td>Unadjusted ORa</td>
</tr>
<tr>
<td>Adjusted ORb</td>
</tr>
<tr>
<td>Students who dated in the past 12 mo</td>
</tr>
<tr>
<td>Unadjusted ORa</td>
</tr>
<tr>
<td>Adjusted ORb</td>
</tr>
</tbody>
</table>

Abbreviations: CI, confidence interval; ICC, intraclass correlation coefficient; OR, odds ratio; PDV, physical dating violence.

aOdds ratios of the intervention effect from the multilevel model.

bOdds ratios were adjusted for baseline behavior, stratifying variables, and sex (n=1722 in the full model; n=1041 in the model restricted to the dating sample).
Correlation \((r) \) between treatment and dating violence

- Correlation \((r) \) between treatment and dating violence

<table>
<thead>
<tr>
<th></th>
<th>Control Group</th>
<th>Intervention Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students With PDV, No./Total No. (%)</td>
<td>74/754 (9.8)</td>
<td>72/968 (7.4)</td>
</tr>
</tbody>
</table>
App. 2 (Online calculator for ES)

- Correlation (r) between treatment and dating violence
Correlation (r) between treatment and dating violence
- Correlation \((r)\) between treatment and dating violence

How do we go from information reported to a 2 X 2 contingency table??
App. 2 (Online calculator for ES)

- Correlation \((r)\) between treatment and dating violence

Intervention: yes = 72
no = 968 – 72 = 896

Control: yes = 74
no = 754 – 74 = 680
Correlation (r) between treatment and dating violence

Transformed Effect size = $Z_r = -0.0423$

(Optional) CI for forest plot or table

$V = SE^2 = 0.0006$ (for weighting)
Computed two different effect sizes (d and r) for didactic purposes

- In a real situation, would convert all studies results to a common effect size.

Conclusion:

- Online calculator very helpful
 - Reduces time, coder burden, and probably error
- Must be sure you understand the reported results, and the options of the online calculator
 - Don’t guess